jueves, 21 de julio de 2016

Nomenclatura y Obtención de Compuestos Inorgánicos - Funcion Quimica

Cada grupo funcional determina las propiedades químicas de las sustancias que los poseen; es decir, determina su función química.
Entonces, se llama función química a las propiedades comunes que caracterizan a un grupo de sustancias que tienen estructura semejante; es decir, que poseen un determinado grupo funcional.
Existen funciones en la química inorgánica y en la química orgánica y para comprender el término función podemos hacer una analogía con el concepto de familia.
En una familia hay rasgos característicos que identifican a sus miembros, de la misma manera se podría afirmar que en las sustancias, tanto orgánicas como inorgánicas, existen agrupaciones de átomos, o  grupo funcional, que debido a sus características comunes poseen un comportamiento típico.
Si nos referimos a las funciones en química inorgánica, se pueden distinguir cinco grandes familias, las cuales poseen ramificaciones filiales y que se organizan de la siguiente manera:
1.- Óxidos: (Ácidos, Básicos, Neutros, Peròxidos y Superóxidos).
2.- Hidróxidos.
3.- Ácidos: (Hidrácidos y Oxácidos).
4.- Sales: (Haloideas y Oxisales (Neutras, Ácidas, Básicas y Dobles)).
5.- Hidruros: Metálicos y no Metálicos.
En tanto las funciones de la química orgánica son muchas más, destacándose entre todas la función hidrocarburo, porque de ella se desprenden todas las demás.
En química orgánica, dependiendo de si el grupo funcional característico posee átomos de oxígeno, de nitrógeno o es algún halógeno, la función química será oxigenada, nitrogenada o halogenada.
Las funciones químicas más importantes son:
Oxigenadas
Nitrogenadas
Halogenadas
Alcoholes
Aminas
Derivados halogenados
Éteres
Amidas

Aldehídos
Nitrilos

Cetonas


Acido carboxílico


Esteres








Alcoholes
Cualquier compuesto orgánico que mediante un enlace sencillo incluya el grupo funcional –OH (hidroxilo) en su estructura molecular pertenece a la función química alcoholes.
Igual como la mayoría de los compuestos orgánicos, un alcohol puede contener más de un grupo –OH en su molécula.
En la figura siguiente tenemos dos alcoholes, formados por la sustitución de un átomo de hidrógeno por un –OH en las moléculas deetano y de propano, para formar etanol y propanol, respectivamente.


Los alcoholes más simples se nombran manteniendo el nombre del alcano de origen, cambiando solo la última letra por la terminación “ol”: metano hace metanol; etano, hace etanol; propano hace propanol; butano hace butanol, etc.
El metanol  (CH3 – OH) es un líquido incoloro, de olor agradable, menos denso que el agua, muy tóxico, que puede producir ceguera si se ingiere un solo trago o puede producir la muerte en dosis mayores. Conocido también como el alcohol de la madera pues antiguamente se obtenía por la destilación de ese material. Se emplea como disolvente de pinturas y barnices, como anticongelante o como combustible en autos de carrera.
El alcohol etílico, también tóxico, aunque en menor grado que el metano, es el componente de los licores, y puede obtenerse por fermentación de frutas.
El nombre que recibe depende del origen de los azúcares fermentados: se llama ron, si procede del azúicar de caña; brandy, si es de la uva; tequila si se obtiene de agave; whisky si se destila de cebada o vodka si procede del centeno.
En la industria, el etanol se emplea como disolvente de grasas y resinas; en la vida doméstica se usa como antiséptico bajo la foirma de alcohol desnaturalizado (mezclado con sustancias que lo hacemn no ingerible).
Otro alcohol de uso frecuente en el hogar  es el 2-propanol o isopropanol.


Este producto orgánico se suele untar sobre la piel de un enfermo para “bajar la fiebre”; el calor del cuerpo humano produce la rápida evaporación de este alcohol y con ello baja la temperatura.
En la industria se le emplea como disolvente en la preparación de cremas y perfumes debido a que es muy soluble en agua.

Éteres
Se llaman éteres los compuestos formados por dos radicales unidos entre sí, mediante  enlaces sencillos, a un átomo de oxígeno (O). El grupo funcional es R – O – R (alcoxi). Los radicales ( R ) que se unen al oxígeno pueden ser iguales o diferentes.
Para nombrarlos, se antepone la palabra éter al nombre de los radicales; si éstos son iguales se menciona el radical anteponiendo el prefijo “di” y agregando la terminación “ico”; si los radicales son diferentes se nombra en primer lugar el de cadena más corta más el nombre del otro al que se le añade la misma terminación “ico”.
Algunos ejemplos de éteres son:
CH3 – CH2 – O – CH2 – CH3                 éter  dimetílico (los dos radicales son iguales)
CH3 - O – CH2 - CH3                             éter metiletílico  (radicales distintos)
CH3 – CH2 – O – CH2 – CH2 - CH3            éter propílico
El éter más conocido es el éter dietílico, que es un líquido muy volátil y un combustible poderoso, conocido porque sirve para “adormecer”. Desde mediados del siglo XIX se usó como anestésico por su fácil aplicación y porque no altera el pulso cardíaco
En la industria su uso más común es como solvente. Algunos son característicos por sus olores.  Y se encuentran en las frutas siendo responsables de sus aromas. El olor del plátano, por ejemplo, se debe al éter metil pentílico.
Diversos éteres se emplean en la industria de los desodorantes y los jabones.

Aldehídos y cetonas
Son dos tipos de compuestos que en su molécula contienen al grupo funcional carbonilo (>C=O, un átomo de oxígeno unido a uno de carbono por medio de un enlace doble). Como ya dijimos anteriormente, si el grupo funcional es terminal (está al final de la cadena) se llaman aldehídos y se llamarán cetonas si el grupo funcional –C=O está unido a un átomo intermedio dentro de la cadena.
Debemos notar que apara los aldehídos, el grupo funcional incluye también al átomo de hidrógeno, por lo que el grupo queda como–CH=O.
Aldehído es una palabra compuesta que significa alcohol deshidrogenado, y para nombrar estos compuestos se cambia la terminación “ol” del alcohol por “al” que identifica a los aldehídos. Las cetonas, en cambio cambian la “ol” del alcohol por la terminación “ona” de la cetona.
El más común de los aldehídos es el metanal, conocido como formol, aldehído fórmico o formaldehído. Es un gas incoloro de olor penetrante y soluble en agua, en alcohol y en éter. Sus usos más comunes son para la conservación de órganos o partes anatómicas. También se usa como desinfectante. En la industria se usa para fabricar resinas, colorantes, germicidas y fertilizantes. Aldehídos de origen vegetal se añaden a ciertos productos para agregarles olor y sabor.
Otro aldehído es el propanal, que  consta de tres carbonos y un grupo funcional carbonilo. El carbono del aldehído está unido aloxígeno por un doble enlace. Está también unido a un hidrógeno.
Importante:
Recuerde que en los aldehídos y las cetonas el enlace entre un carbono y el oxígeno es doble, por lo tanto disminuye el número de hidrógenos necesarios.


La cetona más importante es la propanona o dimetil cetona, conocida como acetona y se emplea para disolver barnices y lacas. La acetona es un líquido incoloro, inflamable, soluble en agua y de olor penetrante.

Ácidos carboxílicos
Compuestos orgánicos que en su molécula contienen el grupo funcional –COOH  (un grupo con enlace =O y un grupo con enlace –OH, unidos al mismo átomo de carbono) son llamados ácidos carboxílicos o ácidos orgánicos. Estos compuestos se forman cuando el hidrógeno de un grupo aldehído es reemplazado por un grupo –OH, como vemos en las siguientes fórmulas estructurales, donde el metanal se convierte en ácido metanoico y el propanal se convierte en ácido propanoico:


Para nombrar estos compuestos se antepone la palabra “ácido” seguida del nombre del alcano del que proviene y se añade la terminación “ico”.
Muchos de los ácidos carboxílicos, en especial aquellos que tienen entre cuatro y veinte átomos de carbono (siempre un número par) se encuentran en las grasas vegetales y animales y son llamados  ácidos grasos saturados.
Ácidos carboxílicos con menos de cuatro átomos de carbono son líquidos y solubles en agua.

Aminas y amidas
Las aminas son compuestos orgánicos derivados del amoniaco (NH3). Se forman cuando uno, dos o los tres átomos de hidrógeno se sustituyen por radicales

Para nombrar las aminas se nombran los radicales, empezando por el más simple y agregando al final la terminación “amina”

Respecto a las amidas,  son compuestos que incluyen los grupos funcionales de aminas y ácidos carboxílicos


En todas las proteínas, tanto animales como vegetales, el grupo amida se encuentra repetido miles de veces en forma de cadenas, y también en algunas macromoléculas como el nylon.






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Nomenclatura y Obtención de Compuestos Inorganicos - Formula Quimica

El medio propuesto para ejecutar algo o resolver un asunto recibe el nombre de fórmula. Para la ciencia, una fórmula es una forma breve que expresa información de modo simbólico. Se trata, en este sentido, de una manera fija de transmitir cierta información.
La química, por su parte, es la ciencia dedicada al estudio de la composición, la estructura y las propiedades de la materia. Los cambios experimentados por ésta durante ciertas reacciones también forman parte de su incumbencia.
Se conoce como fórmula química a la representación de aquellos elementos que forman un compuesto. La fórmula refleja la proporción en que se encuentran estos elementos en el compuesto o el número de átomos que componen una molécula. Algunas fórmulas incluso aportan información sobre cómo se unen los átomos a través de los enlaces químicos y cómo se distribuyen en el espacio.

Para nombrar una fórmula química hay que seguir las reglas de nomenclatura que se denominan formulación química. Una fórmula exhibe símbolos y subíndices: la formulación química establece que los símbolos indican los elementos presentes en el compuesto y los subíndices señalan la cantidad de átomos presentes en el compuesto de cada elemento.
Es posible distinguir entre distintos tipos de fórmulas químicas, algunos de los cuales se exponen a continuación:
Fórmula empírica
Se trata de la expresión que muestra la proporción en la que se encuentran los átomos en un compuesto químico determinado, de la manera más simple posible, razón por la cual se la suele llamar fórmula mínima (representada como fm). Cabe mencionar que a veces coincide con la fórmula molecular (definida más abajo).
Fórmula química
Un claro ejemplo de fórmula empírica se puede apreciar en la molécula del agua, la cual se representa como H2O, ya que por cada dos átomos de hidrógeno contiene uno de oxígeno (éste es uno de los casos en los cuales la fórmula empírica coincide con la molecular). Con el etano, por otro lado, ambas fórmulas son diferentes: la empírica es CH3; mientras que la molecular, C2H6.
Fórmula molecular
La fórmula molecular se utiliza para indicar qué tipo de átomos se hallan en un compuesto molecular dado, así como el número de cada clase de átomos y solamente es correcto su uso en el caso de los compuestos covalentes (la unión de dos no metales, o bien de un no metal con un metal y cuando poseen una diferencia de electronegatividad menor a 1,7). Retomando el caso del etano, su fórmula molecular expresa que posee dos átomos de carbono y seis de hidrógeno, mientras que la empírica indica que por cada tres de hidrógeno hay uno de carbono.
Fórmula semidesarrollada
Se trata de una fórmula parecida a la molecular, pero que indica los enlaces que existen entre cada grupo de átomos de la molécula, para destacar especialmente los funcionales. Se usa principalmente en la química orgánica, donde es fácil observar la estructura de la cadena carbonada y cada sustituyente.
Fórmula desarrollada
Cuenta con una mayor complejidad que la anterior, ya que muestra todos los enlaces y los representa en un plano cartesiano, lo cual facilita la observación de algunos detalles muy importantes de su estructura.
Fórmula estructural
Lo que diferencia la fórmula estructural de las expuestas hasta el momento es que señala la geometría espacial de la molécula a través de las distancias, de los ángulos o del uso de perspectivas en diagramas de 2 o 3 dimensiones.
Fórmula de Lewis

También llamado diagrama o estructura de Lewis, muestra el número total de átomos de una molécula, junto con sus respectivos electrones de valencia, los cuales se representan a través de puntos o rayas. Cabe mencionar que no se recomienda su uso para estructuras de gran complejidad.






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Elaces Químicos - Enlaces Intermoleculares

Fuerza intermolecular se refiere a las interacciones que existen entre las moléculas conforme a su naturaleza. Generalmente, la clasificación es hecha de acuerdo a la polaridad de las moléculas que están interaccionando, o sobre la base de la naturaleza de las moléculas, entiéndase, de los elementos que la conforman.1
Un enlace químico, son las fuerzas que mantienen a los átomos unidos formando las moléculas. Existen dos tipos de enlaces químicos, los enlaces covalentes (en donde los átomos comparten electrones) y las interacciones débiles no covalentes (interacciones débiles entre iones, moléculas y partes de moléculas).
Las interacciones débiles no covalentes se les llama "débiles" porque representan la energía que mantienen unidas a las especies moleculares y que son considerablemente más débiles que los enlaces covalentes. Las interacciones no covalentes fundamentales son:

*El enlace de hidrógeno (antiguamente conocido como enlace por puente de hidrógeno)
*Las fuerzas de Van der Waals, que podemos clasificar a su vez en:
ion-dipolo
dipolo - dipolo.
dipolo - dipolo inducido.
Fuerzas de dispersión de London conocidas como dipolo instantáneo-dipolo inducido.

El enlace de hidrógeno ocurre cuando un átomo de hidrógeno es enlazado a un átomo fuertemente electronegativo como el nitrógeno, el oxígeno o el flúor.3 El átomo de hidrógeno posee una carga positiva parcial y puede interactuar con otros átomos electronegativos en otra molécula (nuevamente, con N, O o F). Así mismo, se produce un cierto solapamiento entre el H y el átomo con que se enlaza (N, O o F) dado el pequeño tamaño de estas especies. Por otra parte, cuanto mayor sea la diferencia de electronegatividad entre el H y el átomo interactuante, más fuerte será el enlace. Fruto de estos presupuestos obtenemos un orden creciente de intensidad del enlace de hidrógeno: el formado con el F será de mayor intensidad que el formado con el O, y éste a su vez será más intenso que el formado con el N. Estos fenómenos resultan en una interacción estabilizante que mantiene ambas moléculas unidas. Un ejemplo claro del enlace de hidrógeno es el agua:

Los enlaces de hidrógeno se encuentran en toda la naturaleza. Proveen al agua de sus propiedades particulares, las cuales permiten el desarrollo de la vida en la Tierra. Los enlaces de hidrógeno proveen también la fuerza intermolecular que mantiene unidas ambas hebras en una molécula de ADN.

Es un tipo especial de interacción dipolo-dipolo entre el átomo de hidrógeno que está formando un enlace polar, tal como N—H, O—H, ó F—H, y un átomo electronegativo como O, N ó F. Esta interacción se representa de la siguiente forma:

A—H•••B A—H•••A

Fuerza de Van der Waals
También conocidas como fuerzas de dispersión, de London o fuerzas dipolo-transitivas, corresponden a las interacciones entre moléculas con enlaces covalentes apolares debido a fenómenos de polarización temporal. Estas fuerzas se explican de la siguiente forma: como las moléculas no tienen carga eléctrica neta, en ciertos momentos, se puede producir una distribución en la que hay mayor densidad de electrones en una región que en otra, por lo que aparece un dipolo momentáneo.
Cuando dos de estas moléculas polarizadas y orientadas convenientemente se acercan lo suficiente entre ambas, puede ocurrir que las fuerzas eléctricas atractivas sean lo bastante intensas como para crear uniones intermoleculares. Estas fuerzas son muy débiles y se incrementan con el tamaño de las moléculas.
[dipolo permanente] H-O-H----Cl-Cl [dipolo transitivo]

Interacción dipolo-dipolo
Una atracción dipolo-dipolo es una interacción no covalente entre dos moléculas polares o dos grupos polares de la misma molécula si esta es grande. Las moléculas que son dipolos se atraen entre sí cuando la región positiva de una está cerca de la región negativa de la otra.
Su origen es electrostático y se pueden entender en función de la Ley de Coulomb. A mayor momento dipolar mayor será la fuerza.4
Las atracciones dipolo-dipolo, también conocidas como Keeson, por Willem Hendrik Keesom, quien produjo su primera descripción matemática en 1921, son las fuerzas que ocurren entre dos moléculas con dipolos permanentes.


Interacciones iónicas

Son interacciones que ocurren a nivel de catión-anión, entre distintas moléculas cargadas, y que por lo mismo tenderán a formar una unión electrostática entre los extremos de cargas opuestas debido a la atracción entre ellas.






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Enlaces Químicos - Enlaces Interatomicos

Este tipo de enlaces se da entre átomos de dos o más elementos, este tipo de enlaces a su vez se divide en tres tipos diferentes, cada uno con propiedades diferentes a los otros, estos son:
ENLACE IONICO
Este tipo de enlace se da entre un elemento metal y un no metal, en él, el elemento metal cede electrones al no metal, con esto el no metal llena su ultimo orbital y el metal queda con su ultimo orbital completo, con esto, ambos alcanzan la estabilidad.
CARACTERISTICAS DE LOS COMPUESTOS FORMADOS POR ENLACES IONICOS:
  • Son solidos
  • Son buenos conductores del calor y la electricidad
  • Tienen altos puntos de fusión y embullición
  • Se disuelven fácilmente en agua
ENLACE COVALENTE
Este tipo de enlace se da entre elementos no metales, en el los átomos lo forman comparten los electrones de su ultimo orbital con los otros átomos para que así alcancen la estabilidad. En este tipo de enlace, los átomos no ganan ni pierden electrones, los comparten,
CARACTERISTICAS DE LOS COMPUESTOS FORMADOS POR ENLACES COVALENTES:
  • Se pueden presentar en cualquier estado de agregación de la materia.
  • Son malos conductores del calor y la electricidad.
  • Tienen puntos de fusión y ebullición relativamente bajos.
  • Son solubles en diversos solventes pero no en el agua.
ENLACE METALICO
Este tipo de enlace se da solo entre metales, por medio de este, se mantienen unidos dos o mas metales entre sí. En este tipo de enlace, al igual que en el enlace covalente, los átomos que lo forman comparten sus electrones de valencia para alcanzar la estabilidad.
CARACTERÍSTICAS DE LOS COMPUESTOS FORMADOS POR ENLACES METALICOS:

  • Suelen ser sólidos, excepto el mercurio
  • Son excelentes conductores del calor y la electricidad
  • Sus puntos de ebullición y de fusión son muy variados
  • Presentan brillo





Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Enlaces Quimicos - Regla de octeto

La regla del octeto, enunciada en 1916 por Gilbert Newton Lewis, Físicoquímico norteamericano, dice que la tendencia de los iones de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de 8 electrones, de tal forma que adquiere una configuración muy estable. Esta configuración es semejante a la de un gas noble,1 los elementos ubicados al extremo derecho de la tabla periódica. Los gases nobles son elementos electroquímicamente estables, ya que cumplen con la estructura de Lewis, son inertes, es decir que es muy difícil que reaccionen con algún otro elemento. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del número de enlaces por átomo, y de las fuerzas intermoleculares.

Existen diferentes tipos de enlace químico, basados todos ellos, como se ha explicado antes en la estabilidad especial de la configuración electrónica de los gases nobles, tendiendo a rodearse de ocho electrones en su nivel más externo. Este octeto electrónico puede ser adquirido por un átomo de diferentes maneras:

*Enlace iónico
*Enlace covalente
*Enlace metálico
*Enlaces intermoleculares
*Enlace coordinado
Es importante saber, que la regla del octeto es una regla práctica aproximada que presenta numerosas excepciones pero que sirve para predecir el comportamiento de muchas sustancias.

CO2, con dos enlaces dobles.

En la figura se muestran los 4 electrones de valencia del carbono, creando dos enlaces covalentes, con los 6 electrones en el último nivel de energía de cada uno de los oxígenos, cuya valencia es 2. La suma de los electrones de cada uno de los átomos son 8, llegando al octeto. Nótese que existen casos de moléculas con átomos que no cumplen el octeto y son estables igualmente.




Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Tabla Periódica - Propiedades Periodicas

Son propiedades que presentan los átomos de un elemento y que varían en la Tabla Periódica siguiendo la periodicidad de los grupos y periodos de ésta. Por la posición de un elemento podemos predecir qué valores tendrán  dichas propiedades así como a través de ellas, el comportamiento químico del elemeneto en cuestión. Tal y como hemos dicho, vamos a encontrar una periodicidad de esas propiedades en la tabla. Esto supone por ejemplo, que la variación de una de ellas en los grupos o periodos  va a responder a una regla general. El conocer estas reglas de variación nos va a permitir conocer el comportamiento, desde un punto de vista químico, de un  elemento, ya que dicho comportamiento, depende en gran manera de sus propiedades periódicas.





Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Tabla Periódica - Organisacion de la tabla periodica

Los elementos están distribuidos en filas (horizontales) denominadas períodos y se enumeran del 1 al 7 con números arábigos. Los elementos de propiedades similares están reunidos en columnas (verticales), que se denominan grupos o familias; los cuales están identificados con números romanos y distinguidos como grupos A y grupos B. Los elementos de los grupos A se conocen como elementos representativos y los de los grupos B como elementos de transición. Los elementos de transición interna o tierras raras se colocan aparte en la tabla periódica en dos grupos de 14 elementos, llamadas series lantánida y actínida.

La tabla periódica también permite clasificar a los elementos en metalesno metales ygases nobles. Una línea diagonal quebrada ubica al lado izquierdo a los metales y al lado derecho a los no metales. Aquellos elementos que se encuentran cerca de la diagonal presentan propiedades de metales y no metales; reciben el nombre de metaloides.
Metales: Son buenos conductores del calor y la electricidad, son maleables y dúctiles, tienen brillo característico.
No Metales: Pobres conductores del calor y la electricidad, no poseen brillo, no son maleables ni dúctiles y son frágiles en estado sólido.
Metaloides: poseen propiedades intermedias entre Metales y No Metales.
LOCALIZACIÓN DE LOS ELEMENTOS EN LA TABLA PERIODICA.

Las coordenadas de un elemento en la tabla se obtienen por su distribución o configuración electrónica: el último nivel de energía localiza el periodo y los electrones de valencia el grupo.
Elementos representativos o del Grupo A:
Están repartidos en ocho grupos y se caracterizan porque su distribución electrónica termina en s-p o p-s. Se identifican con un número romano y la letra A y/o (últimamente) con un número arábigo El número romano del grupo resulta de sumar los electrones que hay en los subniveles s ó s y p del último nivel.
EJEMPLO: localice en la tabla periódica el elemento con Z= 35
La distribución electrónica correspondiente es: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5
El último nivel de energía es el 4, por lo tanto el elemento debe estar localizado en el cuarto periodo. El grupo se determina por la suma 2+5=7, correspondiente al número de electrones ubicados en el último nivel, lo cual indica que el elemento se encuentra en el grupo VII A.
Algunos grupos representativos reciben los siguientes nombres:
Grupo IA: Alcalinos
Grupo IIA Alcalinotérreos
Grupo VIIA: Halógenos
Grupo VIIIA: Gases nobles
Elementos de transición o Grupo B:
Están repartidos en 10 grupos (IIIB, IVB, VB, VIB, VIIB, VIIIB primera, VIIIB segunda, VIIIB tercera columna, IB Y IIB) y son los elementos cuya distribución o configuración electrónica indica que existen electrones en el subnivel d. Se identifican con un número romano y la letra B; siendo determinado el número romano por la suma de los electrones de los últimos subniveles d y s, así:
Si la suma es 3,4,5,6 ó 7 el grupo es IIIB, IVB, VB, VIB,VIIB respectivamente.
Si la suma es 8, 9 ó 10 el grupo es VIIIB primera, segunda o tercera columna respectivamente.
Y si la suma es 11 ó 12 el grupo es IB y IIB respectivamente.
EJEMPLO: localice en la tabla periódica el elemento con Z= 47
La distribución electrónica correspondiente es:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d9
El último nivel de energía es el 5, por lo tanto el elemento debe estar localizado en el quinto periodo. El grupo se determina por la suma 9+2=11, lo cual indica que el elemento se encuentra en el grupo I B. Corresponde al elemento plata (Ag).
Elementos de Transición Interna o Tierras Raras:
Están repartidos en 14 grupos y su configuración electrónica indica la existenica de electrones en el subnivel f. Es de notar que la serie lantánida pertenece al periodo 6 y la actínida al periodo 7 de la tabla periódica.


Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Tabla Periódica - Símbolos de los elementos quimicos

Los símbolos químicos son abreviaciones o signos que se utilizan para identificar los elementos y compuestos químicos. Algunos elementos de uso frecuente y sus símbolos son: carbono, C; oxígeno, O; nitrógeno, N; hidrógeno, H; cloro, Cl; azufre, S; magnesio, Mg; aluminio, Al; cobre, Cu; argón, Ar; oro, Au; hierro, Fe; plata, Ag; platino, Pt. Fueron propuestos en 1814 por Berzelius en remplazo de los símbolos alquímicos y los utilizados por Dalton en 1808 para explicar su teoría atómica.


La mayoría de los símbolos químicos se derivan de las letras griegas del nombre del elemento, principalmente en latín, pero a veces en inglés, alemán, francés o ruso. La primera letra del símbolo se escribe con mayúscula, y la segunda (si la hay) con minúscula. Los símbolos de algunos elementos conocidos desde la antigüedad, proceden normalmente de sus nombres en latín. Por ejemplo, Cu de cuprum (cobre), Ag de argentum (plata), Au de aurum (oro) y Fe de ferrum (hierro). Este conjunto de símbolos que denomina a los elementos químicos es universal. Los símbolos de los elementos pueden ser utilizados como abreviaciones para nombrar al elemento, pero también se utilizan en fórmulas y ecuaciones para indicar una cantidad relativa fija del mismo. El símbolo suele representar un átomo del elemento en una molécula u otra especie química. Sin embargo, los átomos tienen unas masas fijas, denominadas masas atómicas relativas, por lo que también representa un mol.




Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Tabla Periódica - Desarrollo Histórico de la tabla periodica

Los seres humanos siempre hemos estado tentados a encontrar una explicación a la complejidad de la materia que nos rodea. Al principio se pensaba que los elementos de toda materia se resumían al agua, tierra, fuego y aire. Sin embargo al cabo del tiempo y gracias a la mejora de las técnicas de experimentación física y química, nos dimos cuenta de que la materia es en realidad más compleja de lo que parece. Los químicos del siglo XIX encontraron entonces la necesidad de ordenar los nuevos elementos descubiertos. La primera manera, la más natural, fue la de clasificarlos por masas atómicas, pero esta clasificación no reflejaba las diferencias y similitudes entre los elementos. Muchas más clasificaciones fueron adoptadas antes de llegar a la tabla periódica que es utilizada en nuestros días.






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Tabla periodica

La tabla periódica de los elementos es una disposición de los elementos químicos en forma de tabla, ordenados por su número atómico (número de protones), por su configuración de electrones y sus propiedades químicas. Este ordenamiento muestra tendencias periódicas, como elementos con comportamiento similar en la misma columna.
En palabras de Theodor Benfey, la tabla y la ley periódica «son el corazón de la química —comparables a lo que la teoría de la evolución en biología (que sucedió al concepto de la Gran Cadena del Ser) y las leyes de la termodinámica en la física clásica».1
Las filas de la tabla se denominan períodos y las columnas grupos. Algunos grupos tienen nombres. Así por ejemplo el grupo 17 es el de los halógenos y el grupo 18 el de los gases nobles. La tabla también se divide en cuatro bloques con algunas propiedades químicas similares. Debido a que las posiciones están ordenadas, se puede utilizar la tabla para obtener relaciones entre las propiedades de los elementos, o pronosticar propiedades de elementos nuevos todavía no descubiertos o sintetizados. La tabla periódica proporciona un marco útil para analizar el comportamiento químico y es ampliamente utilizada en química y otras ciencias.
Dmitri Mendeléyev publicó en 1869 la primera versión de tabla periódica que fue amplia mente reconocida. La desarrolló para ilustrar tendencias periódicas en las propiedades de los elementos entonces conocidos, al ordenar los elementos basándose en sus propiedades químicas,2 si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.3 Mendeléyev también pronosticó algunas propiedades de elementos entonces desconocidos que anticipó que ocuparían los lugares vacíos en su tabla. Posteriormente se demostró que la mayoría de sus predicciones eran correctas cuando se descubrieron los elementos en cuestión.

La tabla periódica de Mendeléyev ha sido desde entonces ampliada y mejorada con el descubrimiento o síntesis de elementos nuevos y el desarrollo de modelos teóricos nuevos para explicar el comportamiento químico. La estructura actual fue diseñada por Alfred Werner a partir de la versión de Mendeléyev. Existen además otros arreglos periódicos de acuerdo a diferentes propiedades y según el uso que se le quiera dar (en didáctica, geología, etc).4






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"



Metodo Atomico Actual - Configuración de kernel

En química inorgánica, el kernel o núcleo es una forma de simplificación de la configuración electrónica de un elemento sustituyendo los electrones anteriores a la capa de valencia a uno de sus orbitales posee el número máximo de electrones. Gracias a esto, se puede comenzar a contar los electrones usando como punto de referencia al gas noble más cercano al elemento del cual se desea conocer la configuración.
Así por ejemplo la configuración del Litio (Z=3) sería: 1s2 2s1. El Helio (Z=2) es 1s2, por lo que el kernel del Li sería el siguiente: [He] 2s1
Otros ejemplos:
Mg (Z=12): 1s2 2s2 2p6 3s2. Su kernel sería: [Ne] 3s2

Y (Z=39): 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d1. Su kernel sería: [Kr]5s2 4d1...






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Modelo Atómico Actual - Configuraciones Electronicas

En física y química, la configuración electrónica indica la manera en la cual los electrones se estructuran o se modifican en un átomo de acuerdo con el modelo de capas electrónicas, en el cuál las funciones de ondas del sistema se expresa como un producto de orbitales antisimetrizadas.1 2 La configuración electrónica es importante porque determina las propiedades de combinación química de los átomos y por tanto su posición en la tabla periódica.

Como se dijo con anterioridad, la actual tabla periódica (mostrada en la Imagen 10) está ordenada según la configuración electrónica, pero, ¿qué es la configuración electrónica? La configuración electrónica (o C.E) indica la posición de cada electrón dentro de la envoltura nuclear, indicando en el nivel energético en el que éste se encuentra y en que orbital. Cada electrón puede ser identificado específicamente gracias a sus cuatro números cuanticos, los cuales son:

  1. Número Cuántico principal (n): Corresponde al nivel energético en donde se encuentra el electrón. Va desde 1 hacia arriba (1, 2, 3...)
  2. Número Cuántico secundario o azimutal (l): Corresponde al orbital en donde se encuentra el electrón. Se representa por s (0), p (1), d (2) y f (3).
  3. Número Cuántico Magnético (m): Indica la orientación del orbital donde se encuentra el electrón. Va desde -l hasta l (incluyendo el 0).
  4. Número Cuántico de Spin o Giro (s): Este número cuántico se define tradicionalmente como el giro que posee el electrón. Dos electrones con el mismo giro no pueden tener un mismo m (solo se permiten dos electrones por m y deben tener spines (giros) opuestos). Se identifican tradicionalmente como -1/2 y +1/2 -1 y +1, en esta página web se utilizará la primera identificación (-1/2 y +1/2).

  Ahora para poder seguir avanzando en la configuración electrónica debemos conocer primero unos ciertos principios que nos ayudarán a comprender mejor como se desarrolla este tema. Dichos principios son:


  • Principio de Aufbau o de la menor energía: Este principio nos indica que todos los electrones partirán "llenando" los orbitales de menor energía posible. Si el de menor energía está lleno, seguirán con el que le sigue en energía y así sucesivamente.
  • Principio de Hund o de la máxima multiplicidad: Este principio nos dice que en caso de que existan orbitales atómicos con la misma energía, los electrones se distribuirán equitativamente en cada uno y cuando todos tengan un electrón se empezaran a llenar con los que les falten. Por ejemplo, si se tiene tres orbitales con la misma energía (denominados orbitales degenerados), los electrones entrarán de tal manera que los primeros tres electrones entrarán uno en cada orbital, todos con el mismo spin. Cuando esto ocurre se dice que el orbital (los orbitales en este caso) se encuentrasemi-lleno. Posteriormente, se completaran los orbitales con los electrones que hagan falta para este efecto. Esto se comprenderá de mejor manera más adelante, cuando se hagan algunos ejemplos.
  • Principio de exclusión de Pauli: Este principio nos dice que cada electrón posee una combinación única de 4 números cuánticos que lo personaliza. No es posible que existan dos electrones con los 4 números cuánticos iguales. Esto quiere decir, que solamente pueden existir dos electrones por orbital, ya que existen dos espines (+1/2 y -1/2).

  Si se fijan arriba hablé de los orbitales degenerados o con energías iguales, pero, ¿de dónde salen?, ¿cómo se sabe cuántos orbitales degenerados existen y quién los determina? Bueno la respuesta a estas preguntas las da el número cuántico magnético, ya que él es el encargado de indicarnos la orientación espacial de los orbitales. Ahora les colocaré un ejemplo para que quede mucho más claro todo esto que hasta aquí suena algo enredado.





Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Modelo Atómico Actual - Números Cuanticos

Los números cuánticos son unos números asociados a magnitudes físicas conservadas en ciertos sistemas cuánticos. En muchos sistemas, el estado del sistema puede ser representado por un conjunto de números, los números cuánticos, que se corresponden con valores posibles de observables que conmutan con él Ha miltoniano del sistema. Los números cuánticos permiten caracterizar los estados estacionarios, es decir los estados propios del sistema.
En física atómica, los números cuánticos son valores numéricos discretos que indican las características de los electrones en los átomos, esto está basado en la teoría atómica de Niels Bohr que es el modelo atómico más aceptado y utilizado en los últimos tiempos por su simplicidad.

En física de partículas, también se emplea el término números cuánticos para designar a los posibles valores de ciertos observables o magnitud física que poseen un espectro o rango posible de valores discretos.





Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

Modelo atómico actual

La imposibilidad de dar una explicación teórica satisfactoria de los espectros de los átomos con más de un electrón con los principios de la mecánica clásica, condujo al desarrollo del modelo atómico actual que se basa en la mecánica cuántica.
También es conocido como el modelo atómico de orbitales, expuesto por las ideas de científicos como: E. Schrodinger y Heisenberg. Establece una serie de postulados, de los que cabe recalcar los siguientes:

  • El electrón se comporta como una onda en su movimiento alrededor del núcleo
  • No es posible predecir la trayectoria exacta del electrón alrededor del núcleo
  • Existen varias clases de orbitales que se diferencian por su forma y orientación en el espacio; así decimos que hay orbitales: s, p, d, f.
  • En cada nivel energético hay un número determinado de orbitales de cada clase.
  • Un orbital atómico es la región del espacio donde existe una probabilidad aceptable de que se encuentre un electrón. En cada orbital no puede encontrarse más de dos electrones.




Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

El Átomo - Isotopos y sus aplicaciones

En la actualidad, las aplicaciones que poseen los isótopos, tanto si son de tipo radioactivo como isótopos estables, son tan extensas, que debemos limitarnos a citar solamente algunas de las aplicaciones, en éste caso, sobre todo  aquellas que hacen referencia a la química inorgánica.
Existen aplicaciones tan importantes como por ejemplo el uso de isótopos en la detección de fisuras de objetos de metal, a través de radiografía gamma, usando una radiación que viene del isótopo Co 60; o también el uso de isótopos radiactivos para poder realizar el seguimiento de los movimientos de la tierra o el petróleo, así como la destrucción de tumores en el cuerpo mediante radiación con rayos gamma de Co 60 ó Cs 137; y también cabe destacar la utilización de isótopos en las rutas metabólicas tanto en la química orgánica o la bioquímica.

En numerosas de las aplicaciones, los isótopos se utilizan como “trazadores”, donde todos los isótopos pertenecientes a un elemento, se consideran equivalentes químicamente; en otros casos, como por ejemplo en la espectroscopía o la cinética, se usan las pequeñas diferencias que existen entre los diferentes isótopos de un determinado elemento. El o los usos de los isótopos de tipo radiactivo, depende por lo general de la facilidad con la cual se pueden calcular pequeñas cantidades de ellos a través de los equipos y técnicas modernas; así por ejemplo, para un isótopo con una vida media de 14 días, el cual emita una radiación de tipo β, se pueden calcular de manera simple una cantidad de 10^-16 gramos, lo que determina que el método en cuestión sea un millón de veces más sensible que otro tipo de ensayo; esto ocurre por ejemplo para el isótopo del fósforo 32.





Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"



El Átomo - Numero Atómico, Numero de masa Atómica y masa atómica promedio

El número atómico indica el número de protones en el núcleo de un átomo. El número atómico es un concepto importante de la química y de la mecánica cuántica.
El elemento y el lugar que éste ocupa en la tabla periódica derivan de este concepto. Cuando un átomo es generalmente eléctricamente neutro, el número atómico será igual al número de electrones del átomo que se pueden encontrar alrededor de la corteza. Estos electrones determinan principalmente el comportamiento químico de un átomo. Los átomos que tienen carga eléctrica se llaman iones. Los iones pueden tener un número de electrones más grande (cargados negativamente) o más pequeño (cargados positivamente) que el número atómico.

Número de masa atómica
Ese la suma del número de protones y el número de neutrones que se encuentran en el núcleo del átomo.
Masa atómica o unidad de masa atómica

El nombre indica la masa atómica de un átomo, expresada en unidades de masa atómica (umas). Cada isótopo de un elemento químico puede variar en masa. La masa atómica de un isótopo indica el número de neutrones que están presentes en la corteza de los átomos. La masa atómica indica el número partículas en el múcleo de un átomo; esto quiere decir los protones y los neutrones. La masa atómica total de un elemento es una media ponderada de las unidades de masa de sus isótopos. La abundancia relativa de los isótopos en la naturaleza es un factor importante en la determinación de la masa atómica total de un elemento.

La Masa Atomica Promedio es el promedio de los números de masa de los isotopos que existen de un elemento en la naturaleza y se conocen como peso atómico, que esta indicado en la tabla periodica






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

El átomo - Partículas Subatomicas

Una partícula subatómica es una partícula más pequeña que el átomo. Puede ser una partícula elemental o una compuesta, a su vez, por otras partículas subatómicas, como son los quarks, que componen los protones y neutrones. No obstante, existen otros tipos de partículas subatómicas, tanto compuestas como elementales, que no son parte del átomo, como es el caso de los neutrinos y bosones.
La mayoría de las partículas elementales que se han descubierto y estudiado no pueden encontrarse en condiciones normales en la Tierra, generalmente porque son inestables (se descomponen en partículas ya conocidas), o bien, son difíciles de producir de todas maneras. Estas partículas, tanto estables como inestables, se producen al azar por la acción de los rayos cósmicos al chocar con átomos de la atmósfera, y en los procesos que se dan en los aceleradores de partículas, los cuales imitan un proceso similar al primero, pero en condiciones controladas. De esta manera, se han descubierto docenas de partículas subatómicas, y se teorizan cientos de otras más. Ejemplos de partícula teórica es el gravitón; sin embargo, esta y muchas otras no han sido observadas en aceleradores de partículas modernos, ni en condiciones naturales en la atmósfera (por la acción de rayos cósmicos).

Como partículas subatómicas, se clasifican también las partículas virtuales, que son partículas que representan un paso intermedio en la desintegración de una partícula inestable, y por tanto, duran muy poco tiempo.






Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"

El átomo - Evolución del modelo atomico

Muchos de los procesos químicos que ocurren, tanto en la naturaleza v como en los laboratorios, tienen una explicación a nivel microscópico, donde átomos y moléculas participan activamente. Así, para comprender los fenómenos y dar una explicación que se aproxime a la realidad de lo que sucede, los científicos utilizan modelos. Un modelo explica el fenómeno por medio de una analogía que permite visualizar o hacer una creación mental cuando lo ocurrido no se presenta explícita mente a nuestros sentidos. Por lo general el modelo constituye una explicación sencilla, y proporciona una semejanza estructural con el fenómeno que se estudia.
Un modelo no es una estructura rígida, sino que puede perfeccionarse, cambiarse o desecharse si se vuelve obsoleto y ya no cumple la función para la cual fue propuesto. Desde que la ciencia dio sus primero pasos y los químicos iniciaron el estudio de la composición y propiedades de la materia, y se desarrolló de la teoría atómica, los científicos emplearon modelos para comprender la naturaleza del átomo.

En la actualidad se acepta que la materia está formada por átomos y se tiene un modelo atómico consistente con el cual se explica satisfactoriamente su comportamiento. Sin embargo, para llegar a este modelo, para que se llegará a concebir el átomo en su forma actual, pasó mucho tiempo y fueron muchos los científicos que investigaron; plantearon teorías y crearon modelos respecto a la estructura de la materia y del átomo en sí. A pesar de las dificultades evidentes, el concepto de que la materia es de naturaleza corpuscular (formada por partículas) ha llegado a ser uno de los postulados fundamentales y fructíferos de la Química y merece la pena revisar algunos pasos importantes dados para llegar a esta conclusión.


Evolución Histórica del Modelo Atómico

Modelo Atómico de John Dalton:

John Dalton, profesor y químico británico, estaba fascinado por el rompecabezas de los elementos. A principios del siglo XIX estudió la forma en que los diversos elementos se combinan entre sí para formar compuestos químicos. Aunque muchos otros científicos, empezando por los antiguos griegos, habían afirmado ya que las unidades más pequeñas de una sustancia eran los átomos, se considera a Dalton como una de las figuras más significativas de la teoría atómica porque la convirtió en algo cuantitativo. Dalton desarrolló un modelo científico y formulo una serie de postulados concernientes a la naturaleza de los átomos, los cuales destacaban la masa como una propiedad atómica fundamental. Basándose en los datos experimentales imperfectos de que disponía, Dalton propuso su teoría por medio de los siguientes postulados:

1. La materia está compuesta por partículas pequeñísimas llamadas átomos.

2. Los átomos son individuales y no pueden transformarse unos en otros.

3. No pueden ser creados ni destruidos.

4. Los elementos se hallan constituidos por átomos. Los átomos de un mismo elemento son idénticos en tamaño, forma, masa y todas las demás cualidades, pero diferentes a los átomos de los otros elementos.

5. Los átomos de unen para formar las moléculas, combinándose en proporciones fijas de números enteros y pequeños. Por ejemplo, un átomo de azufre (S) se combina con dos átomos de oxígeno (O) para formar la molécula SO2, y lo hacen siempre en la relación de 1:2.

6. Dos o más elementos, pueden combinarse de diferentes manera para formar más de una clase de compuestos. Así, entre el azufre (S) y el oxígeno (O) se pueden formar dos compuestos diferentes, el SO2 y el CO2. En cada uno de estos compuestos hay una proporción de átomos y masa diferente pero definida y siempre en la relación de números enteros y pequeños.

Durante casi un siglo no se dudó de ninguno de los puntos esenciales de la teoría atómica propuesta por Dalton.

Modelo Atómico de John Thomson:

Para los científicos de 1900, al tomar como base los experimentos con rayos catódicos, rayos positivos y, en general, la relación entre materia y electricidad, era clara la necesidad de revisar el modelo atómico propuesto por Dalton.

El descubrimiento del electrón realizado por John Thomson, físico británico, así como los llamados rayos canales o rayos positivos, que pueden observarse como un fino haz de luz detrás de un tubo de descarga con el cátodo perforado, llevó a la conclusión de que el átomo no podía ser una esfera rígida de material característico para cada elemento, como había supuesto ingenuamente Dalton, sino que debía poseer una estructura.

Aunque el nuevo modelo atómico explicaba la relación materia y electricidad, faltaban las bases fundamentales de la combinación química explicada por Dalton en su teoría atómica.

El modelo propuesto por Thomson consideraba al átomo como una esfera de masa cargada positivamente y sobre la cual flotan los electrones, exactamente como se encuentran las uvas, pasas o ciruelas sobre un pastel.

Modelo Atómico de Ernest Rutherford:

Rutherford, científico británico, nacido en Nueva Zelanda estudio de la radioactividad, descubierta a finales del s. XIX, había conducido a la hipótesis de que el número atómico representaba el número de unidades de carga positiva del átomo y, puesto que este es neutro, también el número de electrones. La naturaleza de las distintas radiaciones que emite el radio fue establecida por E. Rutherford en 1903 y, en 1911, el propio Rutherford inició una serie de experimentos cruciales de los que surgió el concepto de núcleo atómico.

En estos experimentos, Rutherford y sus colaboradores H. Geiger y E. Marsden utilizaron una fuente de partículas y, mediante la interposición de planchas de plomo, colimaron el haz de partículas y lo dirigieron sobre una lámina de oro muy fina. Las partículas atravesaron la lámina e incidían sobre una superficie cubierta de sulfuro de zinc, provocando un centelleo. A partir de la observación de este centelleo era posible concluir que la gran mayoría de las partículas
 atravesaban las láminas sin sufrir, o casi sin sufrir, desviación, mientras que algunas sufrían una desiación considerable e incluso unas pocas no lograban atravesar la lámina, rebotando en ella como una pelota contra una pared. Este resultado contradecía el modelo atómico de Thomson, ya que, en caso de ser ese correcto, las partículas no deberían sufrir diferentes desviaciones. Para explicarlo, Rutherford supuso que toda la carga positiva del átomo estaba concentrada en una región, a la que se dio el nombre de núcleo, cuyo diámetro era una diezmilésima del diámetro del átomo.


Los electrones, orbitando en torno al núcleo, equilibrarían la carga positiva de éste, que estaría representada por partículas denominadas protones, de carga igual y de signo contrario a la de los electrones. La materia está así practicamente vacía, lo que explica que la mayoría de las partículas
 que incidan en la lámina de oro no se desvíen, mientras que las partículas que pasan cerca del núcleo de un átomo de oro sufren fuertes desviaciones, y las que inciden directamente sobre un núcleo, rebotan.


La casi totalidad de la masa del átomo correspondiente al núcleo, puesto que la masa del protón, según se había determinado experimentalmente, es 1836 veces mayor que la masa del electrón. Como se sabía que el número atómico representa el número de cargas positivas en el núcleo y puesto que el número de protones necesario para obtener las masas de los átomos era superior al número atómico, era preciso suponer que en el núcleo había, además de los protones que se neutralizaban mutuamente de manera que no <ejercían> como cargas, sino sólo aportando masa. Rutherford no se sentía satisfecho con la idea de que en el núcleo también hubiera electrones y en 1920 especuló con la posibilidad de que en el núcleo hubiera otras partículas de masaa similar al protón, pero carentes de carga eléctrica a las que, por esta razón, se denominó neutrones. La existencia de neutrones fue confirmada por J. Chadwick en 1932, cuando identificó como constituida por esas partículas netras la radiación obtenida al bombardear berilio con partículas


Modelo Atómico de Niels Bohr:
Niels Bohr, físico danés. Para explicar la estructura del átomo, el físico danés Niels Bohr desarrolló en 1913 una hipótesis conocida como teoría atómica de Bohr. Bohr supuso que los electrones están dispuestos en capas definidas, o niveles cuánticos, a una distancia considerable del núcleo. La disposición de los electrones se denomina configuración electrónica. El número de electrones es igual al número atómico del átomo: el hidrógeno tiene un único electrón orbital, el helio dos y el uranio 92. Las capas electrónicas se superponen de forma regular hasta un máximo de siete, y cada una de ellas puede albergar un determinado número de electrones. La primera capa está completa cuando contiene dos electrones, en la segunda caben un máximo de ocho, y las capas sucesivas pueden contener cantidades cada vez mayores. Ningún átomo existente en la naturaleza tiene la séptima capa llena. Los “últimos” electrones, los más externos o los últimos en añadirse a la estructura del átomo, determinan el comportamiento químico del átomo.
Todos los gases inertes o nobles (helio, neón, argón, criptón, xenón y radón) tienen llena su capa electrónica externa. No se combinan químicamente en la naturaleza, aunque los tres gases nobles más pesados (criptón, xenón y radón) pueden formar compuestos químicos en el laboratorio. Por otra parte, las capas exteriores de los elementos como litio, sodio o potasio sólo contienen un electrón. Estos elementos se combinan con facilidad con otros elementos (transfiriéndoles su electrón más externo) para formar numerosos compuestos químicos. De forma equivalente, a los elementos como el flúor, el cloro o el bromo sólo les falta un electrón para que su capa exterior esté completa. También se combinan con facilidad con otros elementos de los que obtienen electrones.
Las capas atómicas no se llenan necesariamente de electrones de forma consecutiva. Los electrones de los primeros 18 elementos de la tabla periódica se añaden de forma regular, llenando cada capa al máximo antes de iniciar una nueva capa. A partir del elemento decimonoveno, el electrón más externo comienza una nueva capa antes de que se llene por completo la capa anterior. No obstante, se sigue manteniendo una regularidad, ya que los electrones llenan las capas sucesivas con una alternancia que se repite. El resultado es la repetición regular de las propiedades químicas de los átomos, que se corresponde con el orden de los elementos en la tabla periódica.
Resulta cómodo visualizar los electrones que se desplazan alrededor del núcleo como si fueran planetas que giran en torno al Sol. No obstante, esta visión es mucho más sencilla que la que se mantiene actualmente. Ahora se sabe que es imposible determinar exactamente la posición de un electrón en el átomo sin perturbar su posición. Esta incertidumbre se expresa atribuyendo al átomo una forma de nube en la que la posición de un electrón se define según la probabilidad de encontrarlo a una distancia determinada del núcleo. Esta visión del átomo como “nube de probabilidad” ha sustituido al modelo de sistema solar.

Mecánica ondulatoria:

El físico francés Louis Victor de Broglie sugirió en 1924 que, puesto que las ondas electromagnéticas muestran algunas características corpusculares, las partículas también deberían presentar en algunos casos propiedades ondulatorias. Esta predicción fue verificada experimentalmente pocos años después por los físicos estadounidenses Clinton Davisson y Lester Halbert Germer y el físico británico George Paget Thomson, quienes mostraron que un haz de electrones dispersado por un cristal da lugar a una figura de difracción característica de una onda. El concepto ondulatorio de las partículas llevó al físico austriaco Erwin Schrödinger a desarrollar una `ecuación de onda' para describir las propiedades ondulatorias de una partícula y, más concretamente, el comportamiento ondulatorio del electrón en el átomo de hidrógeno.
Aunque esta ecuación diferencial era continua y proporcionaba soluciones para todos los puntos del espacio, las soluciones permitidas de la ecuación estaban restringidas por ciertas condiciones expresadas por ecuaciones matemáticas llamadas funciones propias o eigenfunciones (del alemán eigen, `propio'). Así, la ecuación de onda de Schrödinger sólo tenía determinadas soluciones discretas; estas soluciones eran expresiones matemáticas en las que los números cuánticos aparecían como parámetros (los números cuánticos son números enteros introducidos en la física de partículas para indicar las magnitudes de determinadas cantidades características de las partículas o sistemas). La ecuación de Schrödinger se resolvió para el átomo de hidrógeno y dio resultados que encajaban sustancialmente con la teoría cuántica anterior. Además, tenía solución para el átomo de helio, que la teoría anterior no había logrado explicar de forma adecuada, y también en este caso concordaba con los datos experimentales. Las soluciones de la ecuación de Schrödinger también indicaban que no podía haber dos electrones que tuvieran sus cuatro números cuánticos iguales, esto es, que estuvieran en el mismo estado energético. Esta regla, que ya había sido establecida empíricamente por Wolfgang Pauli en 1925, se conoce como principio de exclusión.
Louis Victor Broglie (1892-1987), físico y premio Nobel francés, que contribuyó de manera fundamental al desarrollo de la teoría cuántica. De Broglie nació en Dieppe y estudió en la Universidad de París. Trató de racionalizar la doble naturaleza de la materia y la energía, comprobando que las dos están compuestas de corpúsculos y tienen propiedades ondulatorias. Por su descubrimiento de la naturaleza ondulatoria de los electrones (1924), recibió el Premio Nobel de Física en 1929. Fue elegido miembro de la Academia de Ciencias (1933) y de la Academia Francesa (1943). Fue nombrado profesor de física teórica en la Universidad de París (1928), secretario permanente de la Academia de Ciencias (1942) y consejero de la Comisión de Energía Atómica Francesa (1945).
Werner Karl Heisenberg (1901-1976), físico y Premio Nobel alemán, que desarrolló un sistema de mecánica cuántica y cuya indeterminación o principio de incertidumbre ha ejercido una profunda influencia en la física y en la filosofía del siglo XX.
Heisenberg nació el 5 de diciembre de 1901 en Wurzburgo y estudió en la Universidad de Munich. En 1923 fue ayudante del físico alemán Max Born en la Universidad de Gotinga, y desde 1924 a 1927 obtuvo una beca de la Fundación Rockefeller para trabajar con el físico danés Niels Bohr en la Universidad de Copenhague. En 1927 fue nombrado profesor de física teórica en la Universidad de Leipzig. Después fue profesor en las universidades de Berlín (1941-1945), Gotinga (1946-1958) y Munich (1958-1976). En 1941 ocupó el cargo de director del Instituto Kaiser Wilhelm de Química Física (que en 1946 pasó a llamarse Instituto Max Planck de Física).
Estuvo a cargo de la investigación científica del proyecto de la bomba atómica alemana durante la II Guerra Mundial. Bajo su dirección se intentó construir un reactor nuclear en el que la reacción en cadena se llevara a cabo con tanta rapidez que produjera una explosión, pero estos intentos no alcanzaron éxito. Estuvo preso en Inglaterra después de la guerra.
Heisenberg, uno de los primeros físicos teóricos del mundo, realizó sus aportaciones más importantes en la teoría de la estructura atómica. En 1925 comenzó a desarrollar un sistema de mecánica cuántica, denominado mecánica matricial, en el que la formulación matemática se basaba en las frecuencias y amplitudes de las radiaciones absorbidas y emitidas por el átomo y en los niveles de energía del sistema atómico.
El principio de incertidumbre desempeñó un importante papel en el desarrollo de la mecánica cuántica y en el progreso del pensamiento filosófico moderno. En 1932, Heisenberg fue galardonado con el Premio Nobel de Física.
Erwin Schrödinger (1887-1961), físico y premio Nobel austriaco, conocido sobre todo por sus estudios matemáticos de la mecánica ondulatoria y sus aplicaciones a la estructura atómica.

Nació en Viena y estudió en la universidad de esa ciudad. Dio clases de física en las universidades de Stuttgart (Alemania), Breslau (Polonia), Zurich, Berlín, Oxford y Graz (Austria). Desde 1940 hasta su jubilación en 1955 fue director de la escuela de física teórica del Instituto de Estudios Avanzados de Dublín.
La aportación más importante de Schrödinger a la física fue el desarrollo de una rigurosa descripción matemática de las ondas estacionarias discretas que describen la distribución de los electrones dentro del átomo. Schrödinger demostró que su teoría, publicada en 1926, era el equivalente en matemáticas a las teorías de mecánica matricial que había formulado el año anterior el físico alemán Werner Heisenberg. Juntas, sus teorías constituyeron en buena medida la base de la mecánica cuántica. Schrödinger compartió en 1933 el Premio Nobel de Física con el británico Paul A. M. Dirac por su aportación al desarrollo de la mecánica cuántica. Su investigación incluía importantes estudios sobre los espectros atómicos, la termodinámica estadística y la mecánica ondulatoria.







Informacion obtenida del libro "Química 1 de Clara Luz Martìnez Càzares / Ruben Onofre Aguirre Alonso"